Abstract

In this paper, a numerical study of the geomechanical stress state evolution induced by the railway traffic is presented. The numerical model is based on a 2.5D formulation with the ability to account for the dynamic train‐track interaction. For the case study, the stress state evolution is systematized in the form of stress paths. The results obtained allow to recognize the great influence of the train speed and the presence of irregularities in the track for the behavior of the railway track. Based on the knowledge acquired during the implementation of previous parametric studies, the adequacy of the hollow cylinder torsional test to simulate the complex stress paths induced in the ground of the traffic railway is evaluated. The results obtained allow to put in perspective the simulation of these loads in laboratory, with the aim of studying the damage accumulation in the specimens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call