Abstract

In this paper, we present a convergence analysis of the GILTT method for pollutant dispersion problems consolidating the solution of the problem in analytical representation. There have been many advances in the GILTT technique over the past few years. The advection-diffusion equation was solved for the multidimensional case and applied to various situations, mainly in pollutant dispersion. The theorem of Cauchy-Kowalewsky guarantees the existence and uniqueness of an analytic solution for the advection-diffusion equation. In this paper, we present a convergence analysis for the GILTT method to pollutant dispersion problems. Numerical results are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.