Abstract
BackgroundIndividuals with chronic ankle instability (CAI) exhibit aberrant gait biomechanics relative to uninjured controls. Altered gait biomechanics likely contribute aberrant joint loading and subsequent early onset ankle joint degeneration. Joint (i.e. cartilage) loading cannot be directly measured without invasive procedures but can be estimated via joint contact forces (JCF) generated from musculoskeletal modeling. However, no investigation has quantified JCF in those with CAI during walking despite the link between ligamentous injury and ankle post-traumatic ankle osteoarthritis. Research questionDo patients with CAI exhibit altered ankle compressive and shear JCF profiles during the stance phase of walking compared to those without CAI? MethodsTen individuals with CAI and 10 individuals without a history of ankle sprain completed a gait assessment at their self-selected speed on an instrumented treadmill. Musculoskeletal modeling was applied to estimate ankle JCF variables within a generic model. Variables included the peak, impulse, and loading rates for compressive, anteroposterior shear, and mediolateral shear JCF. ResultsThose with CAI had significantly different JCF forces, relative to uninjured controls, in all directions. More specifically, lower compressive peak and impulse values were noted while higher anteroposterior shearing forces (1 st peak, impulse, loading late) were observed in those with CAI. Those with CAI also demonstrated higher mediolateral shearing forces (1 st peak and impulse). SignificanceOur finding suggests that those with CAI exhibit different ankle joint loading patterns than uninjured controls. Directionality of the identified differences depends on the axis of movement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.