Abstract

We investigated the thermal conductivities of non-doped near-stoichiometric LiTaO 3 (SLT) and Mg (1 mol%)-doped near-stoichiometric LiTaO 3 (Mg:SLT) crystals along the X-, Y-, and Z-axes at room temperature. Those of non-doped congruent LiTaO 3 (CLT) crystal along the same axes were also estimated to investigate the effect of non-stoichiometric defects. The thermal conductivities were determined by measuring the thermal diffusivity using a laser-flash method and measuring the specific heat using a differential scanning calorimeter. Anisotropy of the thermal conductivities was found for all three crystals. That is, the thermal conductivities along the X-axis were the same as those along the Y-axis and less than those along the Z-axis. The thermal conductivities of the SLT crystal were the highest and were twice those of the CLT crystal. The thermal conductivities of the Mg:SLT crystal were slightly lower than those of the SLT crystal apparently due to the Mg-doping. We also investigated the effect of the difference in domain structure on thermal conductivity using as-grown Mg:SLT crystal with randomly distributed multi-domains and found that it did not affect the thermal conductivity along any axis. These findings regarding thermal conductivity should be useful for designing high-power laser applications using SLT and Mg:SLT crystals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call