Abstract
The anisotropy of the n-type charge transport of a fluoro-alkylated naphthalene diimide is investigated in the framework of the non-adiabatic hopping mechanism. Charge transfer rate constants are computed within the Marcus-Levich-Jortner formalism including a single effective mode treated quantum-mechanically and are injected in a kinetic Monte Carlo scheme to propagate the charge carrier in the crystal. Charge mobilities are computed at room temperature with and without the influence of an electric field and are shown to compare very well with previous measurements in single-crystal devices which offer a superior substrate for testing molecular models of charge transport. Thermally induced dynamical effects are investigated by means of an integrated computational approach including molecular dynamics simulations coupled to quantum-chemical evaluation of electronic couplings. It is shown that charge transport occurs mainly in the b,c crystallographic plane with a major component along the c axis which implies an anisotropy factor in very good agreement with the observed value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.