Abstract

Abstract Measurements were made of the kinetic friction which occurs when a tungsten carbide ball slides in various directions on the surface of a single crystal of ice, the track width produced on the surface was also measured. Anisotropies were detected in both the friction coefficient and the track width. The track width φ was at a maximum when the ball was slid normal to the basal plane and a minimum when it was moving parallel to (0001) in the temperature range —5 to —30°C. Although the friction coefficient was at a minimum when slid normal to (0001) and maximum in parallel to (0001) at temperatures of —19°C and below, this relation was found to be reversed at temperatures of —10°C and above. Anisotropy in track width can be explained in terms of the amount by which a slip system contributes to deformation in a specimen. However, our understanding of frictional anisotropy calls for knowledge of the ploughing strength p defined by the adhesion theory of friction. It was found that p reached a maximum in parallel to (0001) and a minimum normal to (0001) and that the frictional anisotropy on (0001) was influenced by the value . A remarkable frictional anisotropy was also observed on the surface inclined to the basal plane at 30°; the maximum friction coefficient was twice the minimum, whereas the maximum track width was only 1.3 times the minimum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call