Abstract

This study presents an effective method to calculate the ideal tensile strength of six face-centered-cubic (fcc) crystals (Cu, Au, Ni, Pt, Al, and Ir) along an arbitrary tensile direction by considering the coupling effect of normal stress and shear stress on a given crystallographic plane. Meanwhile, the fracture modes of the six crystals can also be derived from the competition between shear and cleavage fracture along different crystallographic planes. The results show that both the intrinsic factors (the ideal shear strength and cleavage strength of low-index planes) and the orientation may affect the tensile strength and fracture modes of ideal fcc crystals, which may give the reliable strength limit of fcc metals and well interpret the observed high strength in nano-scale mechanical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.