Abstract

This paper deals with an investigation of the effect of crystallographic orientation and process parameters on the surface roughness of brittle silicon single crystals in ultraprecision diamond turning. The process parameters involve the depth of cut, feed rate, and spindle speed. Experimental results indicate that anisotropy in surface finish occurs when the cutting direction relative to the crystal orientation varies. There exists a periodic variation of surface roughness per workpiece revolution, which is closely related to the crystallographic orientation of the crystals being cut. Such an anisotropy of surface roughness can be minimized with an appropriate selection of the feed rate, spindle speed, and depth of cut. The findings provide a means for the optimization of the surface quality in diamond turning of brittle silicon single crystals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.