Abstract

The field-angular dependence and anisotropy of the critical current density in iron-based superconductors is evaluated using a phenomenological approach featuring distinct anisotropy factors for the penetration depth and the coherence length. Both the weak collective pinning limit and the strong pinning limit relevant for iron-based superconductors at low magnetic fields are considered. It is found that in the more anisotropic materials, such as SmFeAsO and NdFeAsO, the field-angular dependence is completely dominated by the coherence length (upper critical field) anisotropy, thereby explaining recent results on the critical current in these materials. In less anisotropic superconductors, strong pinning can lead to an apparent inversion of the anisotropy. Finally, it is shown that, under all circumstances, the ratio of the c-axis and ab-plane critical current densities for the magnetic field along the ab-plane directly yields the coherence length anisotropy factor εξ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.