Abstract
We have made sets of five independent compressional and shear wave velocity measurements, which with density, allow us to completely characterize the transverse isotropy of samples from five metamorphic belts: the Haast schist terrane (South Island, New Zealand), Poultney slate, Chugach phyllite, Coldfoot schist, and Pelona schist (United States). These velocity measurements include compressional wave velocities for propagation parallel, perpendicular, and at 45° to the symmetry axis, shear wave velocity for propagation and particle motion perpendicular to the symmetry axis, and shear wave velocity for propagation parallel to the symmetry axis. Velocity measurements were made up to pressures of 1 GPa (∼35‐km depth) where microcracks are closed and anisotropy is due to preferred mineral orientation. Our samples exhibit compressional wave anisotropy of 9–20% as well as significant shear wave splitting. Metamorphic terranes that are anisotropic to ultrasonic waves may also be anisotropic at the scale of active and passive seismic experiments. Our data suggest that a significant thickness (10–20 km) of appropriately oriented (steeply dipping foliation) schist in the crust could contribute as much as 45% of observed shear wave splitting. Our data set can also be used to model the effects of crustal anisotropy for active source seismic experiments in order to determine if the anisotropy of the terrane is significant and needs to be taken into account during processing and modeling of the data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.