Abstract

Two types of independent anisotropic structures have been formed simultaneously in amorphous hydrogenated films by applying a femtosecond laser pulse to them, i.e., a structure with a period of several micrometers to several tens of micrometers and a structure with a period of several hundred nanometers. The formation mechanisms of these strictures are different, which allows us to orient them relative to each other in a desirable way. Both structures independently influence the optical properties of the modified films, which causes the diffraction of transmitted light and making the films polarization-sensitive. The conductivity of the modified films correlates with the mutual orientation of the anisotropic structures, whereas no interrelation between the photoconductivity and optical performance of the modified films has been observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.