Abstract

New nonlinear optical (NLO) crystals TmCa4O(BO3)3 (TmCOB) were grown by the Czochralski pulling method, and the anisotropy of second-harmonic-generation (SHG) properties were characterized. Based on the ratio of the peaks of the 2ω signals produced by TmCOB and that of KTP crystal samples at the low fundamental energy, the NLO tensor coefficients d12, d32, d31 and d13 were determined and found to be 0.24, 1.70, −0.55 and −0.32 pm/V, respectively. At 1064 nm, the phase-matching (PM) curves and the effective NLO coefficients (deff) in spatial distribution were evaluated. Efficient SHG was realized on a (32.5°, 180°)-cut TmCOB sample (4 × 4 × 11.8 mm3) in principal plane, by using a 1064 nm Nd:YAG pico-second laser, where the highest conversion efficiency of the single-pass light reached up to 51%, while for a (112.5°, 35.9°)-cut TmCOB sample (4 × 4 × 8 mm3) in spatial PM direction, the single-pass light reached 58%. Meanwhile, the angular noncritical phase matching (A-NCPM) wavelengths along the Y and Z principal axes were calculated and measured, and the limit of type-I PM wavelength of TmCOB was found to be 716 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.