Abstract
The anisotropy of nanoindentation in copper single crystals is studied through experiments and simulations. Nanoindentation tests with different orientations were carried out, and the depth was 20nm-500nm. Simulations were carried out using crystal plasticity finite element method. The results show that sample with different orientations present anisotropic with increase of indentation depth. The accumulated plastic strains of the samples with different orientations are different due to the different angle between the loading direct and the normal to the slip surface. The cumulative plastic strain of oriented samples is the smallest, and orientation is the largest. The amount of slip coefficients initiated simultaneously for samples with different orientations is responsible for the differences in nanoindentation properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.