Abstract

A micromechanical model for the shrinkage anisotropy during sintering of metallic powders is proposed and experimentally assessed. The framework developed for modeling sintering based on the mechanism of grain boundary diffusion is extended to take into account the dislocation pipe-enhanced volume diffusion. The studied iron powder samples are pre-shaped into their green forms by uniaxial cold pressing before sintering step. The resultant green bodies are anisotropic porous structures, with inhomogeneous plastic deformation at the inter-particle contacts. These non-uniformities are considered to be the cause of the anisotropic dislocation pipe diffusion mechanisms, and thus of the undesired shape distortion during shrinkage. The proposed model describes the shrinkage rates in the compaction loading and transverse directions, as functions of both structural and geometric activities of the samples. Dislocation densities can be estimated from such equations using dilatometry and image analysis data. The reliability and applicability of the developed modeling framework are verified by comparing the calculated dislocation densities with outcomes of nanoindentation and electron backscatter diffraction-derived lattice rotations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.