Abstract

A well-known property of solar wind plasma turbulence is the observed anisotropy of the autocorrelations, or equivalently the spectra, of velocity and magnetic field fluctuations. Here we explore the related but apparently not well-studied issue of the anisotropy of plasma density fluctuations in the energy-containing and inertial ranges of solar wind turbulence. Using 10 yr (1998–2008) of in situ data from the Advanced Composition Explorer mission, we find that for all but the fastest wind category, the density correlation scale is slightly larger in directions quasi-parallel to the large-scale mean magnetic field as compared to quasi-perpendicular directions. The correlation scale in fast wind is consistent with isotropic. The anisotropy as a function of the level of correlation is also explored. We find at small correlation levels, i.e., at energy-containing scales and larger, the density fluctuations are close to isotropy for fast wind, and slightly favor more rapid decorrelation in perpendicular directions for slow and medium winds. At relatively smaller (inertial range) scales where the correlation values are larger, the sense of anisotropy is reversed in all speed ranges, implying a more “slablike” structure, especially prominent in the fast wind samples. We contrast this finding with published results on velocity and magnetic field correlations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.