Abstract

The mechanical and physical properties of wood fibres are dependent on the organisation of their constituent polymers (cellulose, hemicellulose and lignin). Fourier Transform Infrared (FTIR) microscopy was used to examine the anisotropy of the main wood polymers in isolated cell wall fragments from branches of maple and Serbian spruce. Polarised FTIR measurements indicated an anisotropy, i.e. orientation of the cellulose microfibrils that was more or less parallel to the longitudinal axis of the cell wall. The hemicelluloses, glucomannan and xylan appeared to have a close link to the orientation of the cellulose and, thus, an orientation more parallel to the axis of the cell wall. An important result is that, in both maple and spruce samples, lignin was found to be organised in a parallel way in relation to the longitudinal cell wall axis, as well as to the cellulose. The results show that, despite the different lignin precursors and the different types of hemicelluloses in these two kinds of wood, lignin has a similar orientation, when it comes to the longitudinal axis of the cell wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.