Abstract
The objective of this research is to use grain-scale numerical simulations to analyze the evolution of stress anisotropy exhibited in wetted granular matter. Multiphysical particulate simulations of unsaturated granular materials were conducted to analyze how the interactions of contact force chains and liquid bridges affect macroscopic responses under various suction pressure and loading histories. To study how the formation and rupture of liquid bridges affect the mechanical responses of wetted granular materials, a series of suction-controlled triaxial tests were conducted with two grain assemblies, one composed of large particles of similar sizes, the other composed of a mixture of large particles with significant amount of fines. The results indicate that capillary stresses are anisotropic in both sets of specimens, and that stress anisotropy is more significant in granular assemblies filled with fine particles. A generalized tensorial Bishop’s coefficient is introduced to analyze the connections between microstructural attributes and macroscopic responses. Numerical simulations presented in this paper indicate that the principal values and directions of this Bishop’s coefficient tensor are path dependent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.