Abstract
We have studied the variations of twist and bend in sickle hemoglobin fibers. We find that these variations are consistent with an origin in equilibrium thermal fluctuations, which allows us to estimate the bending and torsional rigidities and effective corresponding material moduli. We measure bending by electron microscopy of frozen hydrated fibers and find that the bending persistence length, a measure of the length of fiber required before it starts to be significantly bent due to thermal fluctuations, is 130microm, somewhat shorter than that previously reported using light microscopy. The torsional persistence length, obtained by re-analysis of previously published experiments, is found to be only 2.5microm. Strikingly this means that the corresponding torsional rigidity of the fibers is only 6x10(-27)Jm, much less than their bending rigidity of 5x10(-25)Jm. For (normal) isotropic materials, one would instead expect these to be similar. Thus, we present the first quantitative evidence of a very significant material anisotropy in sickle hemoglobin fibers, as might arise from the difference between axial and lateral contacts within the fiber. We suggest that the relative softness of the fiber with respect to twist deformation contributes to the metastability of HbS fibers: HbS double strands are twisted in the fiber but not in the equilibrium crystalline state. Our measurements inform a theoretical model of the thermodynamic stability of fibers that takes account of both bending and extension/compression of hemoglobin (double) strands within the fiber.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.