Abstract

Creep age forming technology (CAF) has been widely used to manufacture large integral panels in aerospace industry. However, due to the bending of the sheet metal, the stress states usually changes along the thickness direction during the CAF process, resulting in a complex distribution of stress. In addition, deformation texture is introduced when the sheet has a large pre-deformation, which also greatly affects the shape and performance of the component after aging. In this paper, the anisotropy in compression creep-ageing behavior of 2219-T3 aluminum alloy was studied. It was found that there is obvious anisotropy of compressive creep strains, the creep strain is the largest when the applied stress is along the rolling direction (RD) and the smallest when the applied stress is along the transverse direction (TD). The results of room temperature (25 ° C) and high temperature (165 ° C) tensile property test shows that the as-received material properties has obvious in-planar anisotropy, and the yield strength in the RD is the largest, but the 45° and TD are basically the same. Interestingly, the anisotropy of yield strength after SFA and compressive stress creep aging has basically disappeared, that is,the material properties tended to be isotropic after ageing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call