Abstract
This paper analyzes the effect of print layer heights and loading direction on the compressive response of plain and fiber-reinforced (steel or basalt fiber) 3D printed concrete. Slabs with three different layer heights (6, 13, and 20 mm) are printed, and extracted cubes are subjected to compression (i) along the direction of printing, (ii) along the direction of layer build-up, and (iii) perpendicular to the above two directions. Digital image correlation (DIC) is used as a non-contact means to acquire the strain profiles. While the 3D printed specimens show lower strengths, as compared to cast specimens, when tested in all three directions, this effect can be reduced through the use of fiber reinforcement. Peak stress and peak strain-based anisotropy coefficients, which are linearly related, are used to characterize and quantify the directional dependence of peak stress and strain. Interface-parallel cracking is found to be the major failure mechanism, and anisotropy coefficients increase with an increase in layer height, which is attributable to the increasing significance of interfacial defects. Thus, orienting the weaker interfaces appropriately, through changes in printing direction, or strengthening them through material modifications (such as fiber reinforcement) or process changes (lower layer height, enables attainment of near-isotropy in 3D printed concrete elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.