Abstract

All life on Earth is characterized by its asymmetry - both the genetic material and proteins are composed of homochiral monomers. Understanding how this molecular asymmetry initially arose is a key question related to the origins of life. Cometary ice simulations, L-enantiomeric enriched amino acids in meteorites and the detection of circularly polarized electromagnetic radiation in star-forming regions point to a possible interstellar/protostellar generation of stereochemical asymmetry. Based upon our recently recorded anisotropy spectra g(λ) of amino acids in the vacuum-UV range, we subjected amorphous films of racemic (13)C-alanine to far-UV circularly polarized synchrotron radiation to probe the asymmetric photon-molecule interaction under interstellar conditions. Optical purities of up to 4% were reached, which correlate with our theoretical predictions. Importantly, we show that chiral symmetry breaking using circularly polarized light is dependent on both the helicity and the wavelength of incident light. In order to predict such stereocontrol, time-dependent density functional theory was used to calculate anisotropy spectra. The calculated anisotropy spectra show good agreement with the experimental ones. The European Space Agency's Rosetta mission, which successfully landed Philae on comet 67P/Churyumov-Gerasimenko on 12 November 2014, will investigate the configuration of chiral compounds and thereby obtain data that are to be interpreted in the context of the results presented here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call