Abstract

The concept of exchange-coupled media (each grain having a soft end whose exchange field helps to switch a hard end) has recently been generalized to allow a continuous gradation of anisotropy from soft to hard. We have recently shown that the “figure of merit” for such media ξ=2Eb∕μ0MsHsw, proportional to the ratio of the energy barrier Eb to the switching field Hsw, cannot exceed 4 for any anisotropy profile K(r). In the thin-wall limit (exchange constant A⪡KL2), it can be made to approach 4 by choosing a graded anisotropy K(z)∝z2. In developing such a medium, it is important to be able to experimentally probe the anisotropy distribution. In this paper, we study one method for doing this, the hard axis loop. In the absence of exchange, the second derivative of this loop gives the distribution directly; we show that even in the presence of realistic exchange, this remains approximately true and the anisotropy distribution can be extracted from the hard axis loop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.