Abstract

Using a two-center Lennard-Jones (2CLJ) model, the simplest anisotropic case, we investigated how anisotropy affects global minimum structures of clusters and obtained some interesting results. The anisotropy parameter, R, is defined as the ratio of the bond length of 2CLJ dimer to the LJ equilibrium pair separation, where a larger R value means higher anisotropy. For low R values, the structures resemble those of the Lennard-Jones atomic clusters. However, as the pairwise interaction becomes more anisotropic, the "magic numbers" change, and several novel cluster patterns emerge as particularly stable structures, and the global minima change from icosahedral, to polyicosahedral and to novel irregular structures. Moreover, increasing the anisotropy effectively softens the 2CLJ potential. Given the general importance of the LJ cluster as a simple model cluster, 2CLJ model can provide a straightforward and useful analysis of the effect of molecular shape on the structures of clusters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call