Abstract

When a cylindrically symmetric magnetized plasma compresses or expands, velocity-space anisotropy is naturally generated as a result of the different adiabatic conservation laws parallel and perpendicular to the magnetic field. When the compression timescale is comparable to the collision timescale, and both are much longer than the gyroperiod, this pressure anisotropy can become significant. We show that this naturally generated anisotropy can dramatically affect the transport of impurities in the compressing plasma, even in the absence of scalar temperature or density gradients, by modifying the azimuthal frictions that give rise to radial particle transport. Although the impurity transport direction depends only on the sign of the pressure anisotropy, the anisotropy itself depends on the pitch magnitude of the magnetic field and the sign of the radial velocity. Thus, pressure anisotropy effects can drive impurities either towards or away from the plasma core. These anisotropy-dependent terms represent a qualitatively new effect, influencing transport particularly in the sparse edge regions of dynamically compressing screw pinch plasmas. Such plasmas are used for both X-ray generation and magneto-inertial fusion, applications which are sensitive to impurity concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.