Abstract
Usually in the context of the anisotropy-based robust performance analysis stochastic systems with zero initial condition are investigated. In this paper we extend this analysis and consider a linear discrete time invariant system under random disturbances and with the nonzero initial condition. In accordance with the basic postulates of the anisotropy-based control theory the disturbance attenuation capabilities of system are quantified by the anisotropic generalized gain which is defined as the largest root mean square gain of the system with respect to a random input and the nonzero initial condition, anisotropy of which is bounded by a given nonnegative parameter a.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.