Abstract
We study the wetting behavior of water droplets on pristine and defective phosphorene using molecular dynamics simulations. It is found that unlike prototypical two-dimensional materials such as graphene and MoS2, phosphorene exhibits an anisotropic contact angle along armchair and zigzag directions. This anisotropy is tunable with increasing the number of layers and vacancy concentration. More specifically, the water contact angles decrease with increasing the number of layers, indicating the importance of water–substrate interactions. The contact angles along both armchair and zigzag directions increase with the increasing vacancy concentration, and the anisotropy disappears when the defect concentration is high. For an in-plane pristine-defective phosphorene heterostructure, when the junction is zigzag-oriented, a spontaneous diffusion of water droplets from the defective region to the pristine region occurs; when the junction is armchair-oriented, however, the spontaneous motion is suppressed. The ene...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.