Abstract

Spinodal demixing into two phases having very different viscosities leads to viscoelastic networks-i.e., gels-usually as a result of attractive particle interactions. Here, however, we demonstrate demixing in a colloidal system of polydisperse, rod-like clay particles that is driven by particle repulsions instead. One of the phases is a nematic liquid crystal with a highly anisotropic viscosity, allowing flow along the director, but suppressing it in other directions. This phase coexists with a dilute isotropic phase. Real-space analysis and molecular-dynamics simulations both reveal a long-lived network structure that is locally anisotropic, yet macroscopically isotropic. We show that our system exhibits the characteristics of colloidal gelation, leading to nonsticky gels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call