Abstract

The conventional method used to estimate velocities for converted-wave (C-wave) prestack time migration is awkward because the P-wave velocity [Formula: see text] comes from P-wave processing, the velocity ratio gamma [Formula: see text] is estimated from C-wave data, and the S-wave velocity [Formula: see text] is then derived from [Formula: see text] and gamma. Instead, by using the C-wave velocity [Formula: see text], effective gamma [Formula: see text], and anisotropy parameter [Formula: see text], velocity updating becomes straightforward and more reliable. To update [Formula: see text] for converted-wave time migration, one can carry out hyperbolic moveout analysis on the hyperbolic-moveout-migrated-common-midpoint (HMO-MCMP) gathers. However, the errors in initial [Formula: see text] and anisotropy parameter [Formula: see text] can only be corrected by trial and error. In this article, we propose to remove the effects of initial [Formula: see text] and [Formula: see text] in the HMO-MCMP gathers by inverting the moveout related to the initial [Formula: see text] and [Formula: see text]. This enables a full nonhyperbolic velocity analysis to update not only [Formula: see text] but also [Formula: see text] and [Formula: see text]. To obtain reliable [Formula: see text], we also develop a simultaneous PP/PS anisotropic-parameter estimation method so the [Formula: see text] estimated from P-wave data is compared immediately with the [Formula: see text] derived from [Formula: see text] by using C-wave data. This provides a better constraint for estimating anisotropy parameters. The method has been tested and shows consistent improvement in converted-wave prestack time-migration velocity estimations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.