Abstract

In this paper, we consider the generalized ghost dark energy in a Bianchi type-I metric (which is a spatially homogeneous and anisotropic) in the framework of Brans–Dicke theory. For this purpose, we use the squared sound speed [Formula: see text] the sign of which determines the stability of the model. At first, we obtain the equation of state parameter, ωΛ = pΛ/ρΛ, the deceleration parameter q and the evolution equation of the generalized ghost dark energy. We find that, in this case, ωΛ cannot cross the phantom line (ωΛ > –1) and eventually the universe approaches a de-Sitter phase of expansion (ωΛ → –1). Then, we extend our study to the case of generalized ghost dark energy in a non-isotropic and Brans–Dicke framework and find out that the transition of ωΛ to the phantom regime can be more easily accounted for than when it is restored into the Einstein field equations. In conclusion, we find evidence that the generalized ghost dark energy in BD theory can lead to a stable universe favored by observations at the present time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.