Abstract

Thermomechanical fatigue in distinct crystal orientations of nickel-base single-crystal superalloy was studied. Crack initiation modes and damage mechanisms were characterized on fracture surfaces and longitudinal sections by scanning electron microscope and optical microscope. Creep damage nucleated from casting pores in IP-TMF and propagated under mode I. The creep facets were controlled by the activated slip systems, whereas fatigue damage was orientation-dependent and developed by slipping along different crystallographic planes. Oxidation-assisted cracking in OP-TMF tests was non-crystallographic for all crystal orientations. Multi-layer structures near the crack tip revealed successive growth of oxide and the crack grew within the oxidized material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.