Abstract

Under particle-based framework, level set is generally defined for fluid surfaces and is integrated with marching cubes algorithm to extract fluid surfaces. In these methods, anisotropic kernels method has proven successful for reconstructing fluid surfaces with high quality. It can perfectly represent smooth surfaces, thin stream and sharp features of fluids compare to other methods. In this paper, we propose a novel approach to extend it to the simulation of multiphase fluids simulation. In order to ensure fine effects for both fluid surface and multiphase interface, we modify the calculation of original anisotropic kernels and address a binary tree strategy for reconstruction. Our method can extract fluid surfaces simply and effectively for particle-based multiphase simulation. It solved the problem of overlaps and gaps at multiphase interface that exist in traditional methods. The experimental results demonstrate that our method keep a good fluid surface and interface effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.