Abstract

Polycrystalline La$_{7}$Ir$_{3}$ is reported to show superconductivity breaking time-reversal symmetry while also having an isotropic $s$-wave gap. Single crystals of this noncentrosymmetric superconductor are highly desirable to understand the nature of the electron pairing mechanism in this system. Here we report the growth of high-quality single crystals of La$_{7}$Ir$_{3}$ by the Czochralski method. The structural and superconducting properties of these large crystals have been investigated using x-rays, magnetization, resistivity and heat capacity measurements. We observe a clear anisotropy in the lower and upper critical fields for magnetic fields applied parallel and perpendicular to the hexagonal $c$ axis. We also report the presence of a robust electronic critical field, that diverges from the upper critical field derived from heat capacity, which is the hallmark of surface superconductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call