Abstract
Numerical methods for stress analysis are increasingly being employed in the micromechanics of solids. In this paper, the boundary integral equation (BIE) method for two-dimensional general anisotropic elasticity, based on the quadratic isoparametric element formulation, is extended to treating some inclusion problems. All the cases analysed involved an elliptical zirconia inclusion in an alumina matrix, noting that ZrO2–Al2O3 is an advanced ceramic increasingly used in structural applications. The BIE results are compared with those calculated using Eshelby's equivalent inclusion approach where possible, and excellent agreements between them are obtained. The present work demonstrates the suitability of using this numerical technique for analysing such problems and, in particular, the ease with which it may be used even in the case of general anisotropy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Strain Analysis for Engineering Design
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.