Abstract

NdNiO3 (NNO) films were grown by pulsed laser deposition on orthorhombic (110)-, (001)-, and (100)-oriented NdGaO3 substrates. It is found that all the films are tensile-strained but show dramatically different metal-insulator transition (MIT) temperatures (TMI) (160–280 K), as compared with the NNO bulk (∼200 K). A high resemblance in the sharpness of MIT and lattice variation across the MIT was observed. The TMI is highly dependent on the magnitude of the orthorhombic distortion induced by the different substrate surface plane and tends to recover the bulk value after annealing. Our results suggest that the anisotropic epitaxial strain can effectively tune the MIT of NNO films, and the NiO6 octahedra rotation and deformation involved in accommodating the tensile strain might cause the different TMI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.