Abstract

An analytical study of the anisotropic velocity correlation spectrum tensor in the inertial subrange of homogeneous turbulent shear flow is performed using a Lagrangian renormalized spectral closure approximation. The analysis shows that the spectrum in the asymptotic limit of infinitely large Reynolds numbers Re is determined by two nondimensional universal constants; theoretical estimates for the constants are provided. The anisotropic component of the spectrum at finite Re is more sensitive to large-scale turbulence structures than the isotropic component. A preliminary analysis of the effect of finite Re or the width of the inertial subrange is in qualitative agreement with direct numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.