Abstract

Diffusion of particles has wide repercussions ranging from particle-based soft matter systems to solid state systems with particular electronic properties. Recently, in the field of magnetism, diffusion of magnetic skyrmions, topologically stabilized quasi-particles, has been demonstrated. Here we show that by applying a magnetic in-plane field and therefore breaking the symmetry of the system, the skyrmion diffusion becomes anisotropic with faster diffusion parallel to the field axis and slower diffusion perpendicular to it. We furthermore show that the absolute value of the applied field controls the absolute values of the diffusion coefficients so that one can thereby uniquely tune both the orientation of the diffusion and its strength. Based on the stochastic Thiele equation, we can explain the observed anisotropic diffusion as a result of the elliptical deformation of the skyrmions by the application of the in-plane field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.