Abstract

There is a hot debate on the anomalous behavior of superfluid density ρ_{s} in overdoped La_{2-x}Sr_{x}CuO_{4} films in recent years. The linear drop of ρ_{s} at low temperatures implies the superconductors are clean, but the linear scaling between ρ_{s} (in the zero temperature limit) and the transition temperature T_{c} is a hallmark of the dirty limit in the Bardeen-Cooper-Schrieffer (BCS) framework [I. Bozovic etal., Nature (London) 536, 309 (2016)NATUAS0028-083610.1038/nature19061]. This dichotomy motivated exotic theories beyond the standard BCS theory. We show, however, that such a dichotomy can be reconciled naturally by the role of increasing anisotropic scattering caused by the apical oxygen vacancies. Furthermore, the anisotropic scattering also explains the "missing" Drude weight upon doping in the optical conductivity, as reported in the THz experiment [F. Mahmood etal., Phys. Rev. Lett. 122, 027003 (2019)PRLTAO0031-900710.1103/PhysRevLett.122.027003]. Therefore, the overdoped cuprates can actually be described consistently by the d-wave BCS theory with the unique anisotropic scattering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call