Abstract

Magnetic semiconductors are a vital component in the understanding of quantum transport phenomena. To explore such delicate, yet fundamentally important, effects, it is crucial to maintain a high carrier mobility in the presence of magnetic moments. In practice, however, magnetization often diminishes the carrier mobility. Here, it is shown that EuTiO3 is a rare example of a magnetic semiconductor that can be desirably grown using the molecular beam epitaxy to possess a high carrier mobility exceeding 3000 cm2 V-1 s-1 at 2 K, while intrinsically hosting a large magnetization value, 7 μB per formula unit. This is demonstrated by measuring the Shubnikov-de Haas (SdH) oscillations in the ferromagnetic state of EuTiO3 films with various carrier densities. Using first-principles calculations, it is shown that the observed SdH oscillations originate genuinely from Ti 3d-t2g states which are fully spin-polarized due to their energetical proximity to the in-gap Eu 4f bands. Such an exchange coupling is further shown to have a profound effect on the effective mass and fermiology of the Ti 3d-t2g electrons, manifested by a directional anisotropy in the SdH oscillations. These findings suggest that EuTiO3 film is an ideal magnetic semiconductor, offering a fertile field to explore quantum phenomena suitable for spintronic applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.