Abstract

For this study, gas transport in the gas diffusion layers of polymer electrolyte fuel cells was analyzed in one through-plane and two in-plane directions. Gas transport was calculated using Lattice Boltzmann simulations, with non-woven gas diffusion layers measured both through-plane and in-plane. The micro structure for the transport simulations was based on a stochastic model that can take into account uncompressed and compressed materials. The micro structure of this kind of gas diffusion layers is superposed by fiber bundles. Their impact on the anisotropy of the in-plane permeabilities was then investigated. Finally, the influence of structural inhomogeneities on in-plane flow was analyzed. Compression has a high influence on through-plane and in-plane permeability. The impact of the fibers bundles is smaller than the impact of local variations of the micro structure according to the stochastic geometry model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.