Abstract

TlInSe2 chain crystals were prepared using the modification of the Bridgman technique. The grown crystals were identified by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX), and X-ray diffraction (XRD). We investigate the anisotropy of transport properties for the first time for TlInSe2 crystals. Temperature dependence of the dc electrical conductivity, Hall coefficient, Hall mobility, and charge carrier concentration were investigated in the temperature range 184–455 K. The conduction mechanism of TlInSe2 crystals was studied, and measurements revealed that the dc behavior of the grown crystals can be described by Mott’s variable range hopping (VRH) model in the low temperature range, while it is due to thermoionic emission of charge carriers over the chain boundaries above 369 K. The Mott temperature, the density of states at the Fermi level, and the average hopping distance are estimated in the two crystallographic directions. The temperature dependence of the ac conductivity and the frequency exponent, s, is reasonably well interpreted in terms of the correlated barrier-hopping CBH model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call