Abstract

Abstract Positronium (Ps = (e+ e−)) in synthetic crystalline quartz is investigated by means of the positron spin relaxation (e+SR) technique. The set-up employed measures the change in the Doppler broadening of the 511 keV annihilation photon line caused by the reversal of large magnetic fields applied along the spin polarization axis of positrons (e+) emitted from a 68Ge/68Ga source. In contrast with other methods, the technique allows the detection of Ps in condensed matter even if the Ps-forming e+ fraction r is quite small. Moreover, because in single crystals the magnetic field defines a preferred crystallographic direction, the e+SR technique permits the study of the anisotropy of the hyperfine interaction of Ps in matter. The theory necessary to deduce the Ps hyperfine tensor from the e+SR measurements is developed. Room-temperature measurements show that in synthetic quartz crystals (i) the Ps-forming e+ fraction is r = 0.15, (ii) the electron density at the e+ in Ps is about 0.3 of the vacuum va...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.