Abstract
Porous ceramic materials are attractive candidates for thermal insulation. However, effective ways to develop porous ceramics with high mechanical and thermal insulation performances are still lacking. Herein, an anisotropic porous silica ceramic with hierarchical architecture, i.e. long-range aligned lamellar layers composed of hollow silica spheres, was fabricated applying a facile bidirectional freezing method. Due to such anisotropic structure, the as-prepared porous silica ceramic displays low thermal conductivity across the layers and high compressive strength along the layers. Additionally, the anisotropic porous silica ceramic is fire-resistant. As a proof of concept, a mini-house was roofed with the anisotropic porous silica ceramic, showing that the indoor temperature could be stabilized against environmental temperature change, making this porous ceramic a promising candidate for energy efficient buildings and other industrial applications. Our study highlights the possibility of combining intrinsically exclusive properties in engineering materials through constructing biomimetic porous structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.