Abstract

Abstract The Law of Effective Stress has found wide application in structural geology, rock mechanics and petroleum geology. The commonly used form of this law relies on an assumption of isotropic porosity. The porosity in and around fluid-saturated fault zones is likely to be dominated by tectonically induced cracks of various shapes and sizes. Previously published field and laboratory data show that these cracks occur in distinct patterns of preferred orientation, and that these patterns vary around the fault zone. This paper uses the more general form of the Law of Effective Stress which incorporates anisotropic poroelasticity to model the geomechanical response of fault zones surrounded by patterns of oriented cracks. Predictions of fault stability in response to fluid pressure changes are shown to depend on both the nature (or symmetry) of the crack pattern and the orientation of the crack patterns with respect to the in situ stress. More complete data on the porosity of natural fault zones will enable more accurate predictions of fault stability in the subsurface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.