Abstract
An anisotropic piezoelectric response is demonstrated from InGaN nanowires (NWs) over a pyramid-textured Si(100) substrate with an interfacet composition and topography modulation induced by stationary molecular beam epitaxy growth conditions, taking advantage of the unidirectional source beam flux. The variations of InGaN NWs between the pyramid facets are verified in terms of morphology, element distribution, and crystalline properties. The piezoelectric response is investigated by electrical atomic force microscopy (AFM) with a statistic analyzing method. Representative pyramids from the ensemble, on top of which InGaN NWs grown with a substrate held at an oblique angle, were characterized for understanding and confirming the degree of anisotropy. The positive deviated oscillation of the peak force error is identified as a measure of the effective AFM tip/NW interaction with respect to the electrical contact and mechanical deformation. The Schottky contact between the metal-coated AFM tip and the NWs on the different facets reveals distinctions consistent with the interfacet composition variation. The interfacet variation of the piezoelectric response of the InGaN NWs is first evaluated by electrical AFM under zero bias. The average current monotonically depends on the scan frequency, which determines the average peak force error, that is, mechanical deformation, with a facet characteristic slope. A piezoelectric nanogenerator device is fabricated out of a sample with an ensemble of pyramids, which exhibits anisotropic output under periodic directional pressing. This work provides a universal strategy for the synthesis of composite semiconductor materials with an anisotropic piezoelectric response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.