Abstract
Some critical aspects of the anisotropic absorption and emission properties of quasi one-dimensional structures are reviewed in the context of III-V compound semiconductor nanowires. The unique optical and electronic properties of III-V nanowires stem from the combination of dielectric effects due to their large aspect ratio, and their specific crystallographic structure which can differ significantly from the bulk case. The growth conditions leading to single-crystal nanowires with either zinc blende or wurtzite phase are first presented. Dipole selection rules for interband transitions in common III-V compounds are then summarized for the two different phases, and corroborated by ab initio Density Functional Theory calculations of the oscillator strength. The optical anisotropy is discussed considering both the effect of refractive index mismatch between the nanowire and its surroundings and the polarization of the emitting dipoles set by the nanowire crystallographic structure and orientation. Finite Difference Time Domain simulations are finally employed to illustrate the influence of the emitting dipole orientation and the nanowire diameter on the distribution of radiation in the far-field. The importance of the correlation between structural and optoelectronic properties is highlighted in view of potential applications in future nanowire photonics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.