Abstract

We study experimentally two-dimensional periodic photonic lattices optically imprinted in photorefractive nonlinear media, and explore the effect of anisotropy on the induced refractive-index patterns. The orientation anisotropy is demonstrated by comparing square and diamond lattices, while the polarization anisotropy is shown to distinguish ordinarily and extraordinarily polarized light. In particular, the extraordinarily polarized lattice induces much stronger refractive-index modulation for the same conditions. Finally, we exploit the photorefractive anisotropy to generate a quasi-one-dimensional refractive-index pattern for the observation of two-dimensional solitons and corroborate these experiments by numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.