Abstract

The nitriding process of the coarse-grained and fine-grained pure titanium proceeded by multidirectional forging technique has been investigated at temperatures of 623, 673, and 723 K. The process was carried out by high-density radiofrequency-direct current plasma combined with a rectangular hollow cathode device. The result obtained is a significant increase in surface hardness with increasing holding temperature. The surface hardness increases due to forming a surface layer composed of δ-Ti2N, ε-Ti2N and TixNx observed from x-ray diffraction results. This paper explains the mechanism of surface layer formation. We also observed anisotropic phase transformation of titanium nitride through the right shift of the x-ray diffraction peaks. Diffused nitrogen atoms during the nitriding process cause a change in crystal orientation through structural transformation of the metastable δ-Ti2N to the stable ε-Ti2N. The structural reconstruction will continue by forming TixNx to achieve stoichiometric equilibrium. More compacting of the surface microstructure is also obtained by increasing nitriding temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call