Abstract

We describe a general pathway to prepare an anisotropic phase-separated polystyrene (PS) - poly(vinyl methyl ether) (PVME) blend morphology by using electrically pre-orientated clay platelets. The clay platelets were oriented in a PS/PVME blend by means of an externally applied AC electric field while the blend is in one phase. Following orientation step, phase separation of the blends was induced by a temperature jump above their lower critical solution temperature (LCST) in the presence of the oriented clay platelets. In this process, an early stage co-continuous PS/PVME morphology coarsened and turned anisotropic phase-separated morphology parallel to the direction defined by clay planes oriented by AC electric field. The degree of anisotropy of PS/PVME phase-separated morphology was characterized by image analysis and that was found to be linearly proportional to the degree of orientation of clay platelets obtained by a 2D Wide Angle X-ray Scattering (WAXS). Transmission Electron Microscope (TEM) image of the blend morphology revealed that clay platelets oriented to AC field direction were located in a PVME phase. The electrically ordered column structures of clay platelets in the PVME phase yielded anisotropic PS diffusion during the phase separation. This process provides a unique new way to develop directionally organized phase-separated morphology from partially miscible binary blends using nanoparticles in combination with an external electric field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.