Abstract

AbstractLangmuir–Blodgett (LB) film deposition gives an opportunity to control the packing density and orientation of anisotropic nanoparticles at a monolayer level, allowing accurate characterization of their anisotropic material properties. The uniaxial deposition of rod‐shaped cellulose nanocrystals (CNCs) over a macroscopically large area is achieved by aligning the long axis of CNCs on the LB trough with the direction of the maximum drag force within the meniscus during the vertical pulling of the substrate from the LB trough. On the uniaxially‐aligned LB films, anisotropic linear and non‐linear optical properties of CNCs are obtained using Mueller matrix spectroscopy and sum frequency generation spectroscopy, respectively, and explained with time‐dependent density functional theory calculations. Also, the frictional anisotropy of the LB film is measured using atomic force microscopy and explained theoretically. The findings of this study will be valuable for preparation of anisotropic nanoparticle thin films with uniform arrangements and utilization of their anisotropic material properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call