Abstract

The subband structure and optical properties of a cylindrical quantum well wire under intense non-resonant laser field are investigated by taking into account the correct dressing effect for the confinement potential. The energy levels and wave functions are calculated within the effective mass- approximation using a finite element method. It is found that the absorption coefficient and the saturation intensity are strongly affected by the laser amplitude and frequency as well as by the incident light polarization. As a key result, a large anisotropy in the linear and nonlinear optical absorptions for very intense laser field is predicted. These effects can be useful for the design of polarization sensitive devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call